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Abstract
New exact solutions of the homogeneous, free-space wave equation are
obtained. They originate from complex source points moving at a constant rate
parallel to the real axis of propagation; and, therefore, they mintain a
Gaussian profile as they propagate. Finite energy pulses can be constructed

from these Gaussian pulses by superposition.
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A recent article (Brittingham, Ref. 1) has indicated the existence of a

new type of solution of the homogeneous. free-space wave equation:
Oe(2.t) = {a - 3%, Ja(F.t) = 0 (1)

which was termed a Focus Wave Mode (FWM) for its alleged soliton-like
properties. It has been found that this FWM is but one of a class of
solutions of (1). In particular, assuming the desired direction of

propagation is along the z-axis, a solution of the form
o(F.t) = e‘k(“‘:t) Fk(x,_y,z-ct) (2)

reduces (1) to a Schrddinger equation: i.e.,

o-ik(z+et) [ ik(z¥ct) Fo= (8, + 4k 3.} F =0 (3)

where the transverse Laplacian 4, = axz + ayz and the characteristic

variables (t.0) = (z-ct,z+ct). Equation 2 has a syrmetric

solution (p2 = x2 +-y2)

exp[-kpZ/(z0 +i1)]

F(xy.1) =~z + 11 (4)
that originates at the complex source location (p.T) = (O,izo) :
{Al + 4ik aT} Fk(x,y.r) = §(p)8(T-iz) (5)

the right-hand side being jdentically zero for a point in real space-time.



Clearly, the source location z = 1‘z0 + ct moves parallel to the real

z-axis. Moreover, defining the complex variance V = zg + it so that

(6)

zl w—de

1.1
V R’

It is recognized immediately that (4) represents a moving Gaussian beam with
2

beam spread A = zy + (12/20). phase front curvature R = 1 + (ZOZ/T), and
normalized beam waist (A/k)llg Consequently, combining (2) and (4), the
fundamental solution

expliko - ke?/(z, + 11)]

oF.t) = g (o,m00) = Tz, + 77) (7

as a modulated, moving Gaussian pulse.

A short time history of Re® with f = kc/2w = 3.0 x 109 and z5 = 1.0 is
shown in Fig. 1. The second subplots are contour plots of the 3-D surface
plots given in the first subplot. The Gaussian profile of the pulse is
apparent. Notice that this profile is maintained during propagation with only
local variations. The latter occur primarily near the profile
center (p,t) = (0,0). The variation in the shape of & with k is illustrated
in Fig. 2. The pulse is concentrated near the p-axis for small k and becomes
more concentrated along the z-axis for large k. The unusual features of the
plots in Fig. 2c such as the jagged peaks and the ragged contours are
artifacts of the coarseness of the computational grid. It has also been
demonstrated that the pulse amplitude decreases as zg increases.

The FWM solution of Maxwell's equations in {1] is readily obtained from
(7) with a Hertzian potential formulation. It is the zeroth-order mode in a

sequence of multipoles that can be generated in a cylindrical (rectangular)



geometry by applying Laguerre (Hermite) polynomial operators to the
fundamental Gaussian mode (7). Dr. Brittingham has brought to my attention
that Bélanger (Ref. 2) also recognized this point. However, contrary to the
original article [1] and to (2], Fig. 1 demonstrates that the solution is
neither focused nor packet-like nor a boost solution (translationally
invariant). Moreover, recognizing that these pulses originate from complex
source locations connects these results to a large body of literature. In

particular, the concept that a Gaussian beam is equivalent paraxially to a

spherical wave with a centre at a (stationary) complex location was introduced
by Deschamps (Ref. 3) and was later used extensively by Felsen (for example,
see Ref. 4) to model the propagation and scattering of Gaussian beams. In
contrast to those beam descriptions, (7) is an exact solution of (1). On the
other hand, the fundamental Gaussian pulse satisfies all of the properties
associated with Gaussian beams. For example, its propagation through an
optical system will be described by the ABCD transformation law. [5, Sec.6.7]
The approach that led from (1) to (7) can also be used to define Gaussian

pulse solutions of related equations of import. Consider the Klein-Gordan

equation:
Ov-2e=0 (8)

where y = mc/ . It has the exact axially symmetric solution

ik

[+
W(F,t) = exp(-inlr/ak)e(?.t) =e ©FF

Fk(x,y,t) (9)

where the effective modulation frequency



=k peC = (K - ke = [1 - (me/2fk)%T ke (10)

Carf = Kef

has heen modified by the mass of the particle. Note that the modulation
disappears when fik = mc/2 . Similarly, the wave equation in a transverse

quadratic medium
2 2
D‘l’ - (eo tex + eyy YYy=20 (11a)
reduces to a harmonic oscillator Schr;ﬁinger equation

4ika_F, = -a F + (gg + el + ;yyz) Fi - (11b)
Restricting the problem to one transverse spatial dimension, one can obtain an
exact solution from path integral literature (e.g., Ref. 6, Chap. 6) that is
readily converted to one originating from a complex source location. A
modified Gaussian pulse is obtained. In fact, when the transverse medium
coefficients are smll, the results reduce to those discussed above. One
should then be able to modify standard quantum electronic results (e.g.,
Ref. 5, Chap 6) to apply directly to these exact complex centre pulse
solutions.

A strong objection to the results in [1] has been raised essentially
because the solution (7) has infinite energy. This is not a drawback
per_se. Plane wave solutions of (1) also share the infinite energy property
and are commonly employed in constructing physical signals. The Gaussian
pulse solutions offer a new set of modes that can be used to construct finite

energy solutions of (1). In particular, the function



f(F.t) = h(p,1,0) = J &k Flk) g (po7.0)
- m%;o Fyey [ ok F) ekslesmio) (12)

where s(p.1,0) = -ic + pz/(z0 + it) satisfies (1) in real space-time. The
wave number has been restricted to non-negative values in this expansion (as
well as assuming that z, > 0 ) to guarantee the finiteness of the kernel ¢k.
The resulting Laplace transform expression yields a rich class of possible

solutions. An inversion formula corresponding to the Gaussian pulse expansion

(12) is

F(k) = [ do fu dt fo pdo ¥ (py1,0) h(p,1,0) (13)

where the kernel

2
-(t/8kz,)
¥ (p.1,0) = 8 /2 e 0 ¢: (p.7,0) (14)

¢: being the complex conjugate of ¢k. Equivalently, the completeness relation

fo do f“ dt [ pdp wk(p.r.o) ¢:.(p.r.0) = §(k-k') (15)

- -~ 0

is satisfied by ¥ and Oy - The density exp[-(t/4kzo)2] dt represents a
Gaussian measure over T with real variance 8(kzo)2, kzy being the source phase

distance. which guarantees the finiteness of the t-integration.

Consider, as an example, the spectrum F(k) = exp(-ak). Equation 12 gives



the pulse

> 1 1
f(r.t) =ﬁi(?0 + iT1) [s(p.r,a) + a] . (16)

Setting f+(F.t) = f(r.t) and f_(F,t) = f+(?,-t) and a =2z, =y, the composite

pulse

¥(F,t) = f (F,t) - f_(F.t)

=1 _ y(ct) (17)
2r 2
{[e% + (z - ct)(z + ct) + ¥°1 + 4v2(ct)?}

is a-real. exact solution of (1). A time sequence of a pulse (17)
with vy = 1.0 is given in Fig. 3. The pulse has zero amplitude at t = 0 and
its mxima occur at p =z =0 for 0 <t < y/c and lie on the
sphere p2 + zZ = R2 = (ct)2 - 72 for t > y/c . Its amplitude on that
sphere [8nv(ct)]'1. decreases essentially -as R™L for ct » Y. The likeness of
these figures to those describing a pebble dropped in a pond precipitated the
name "splash pulse”. As the figures illustrate, the support of the splash
pulse is localized in space and separates space into two regions of null field
for t > y/c, the pulse layer heing relatively thin. The apparent spikes in
the surface subplot in Fig. 3c again are due to the coarseness of the
computational grid employed in the graphics routine.

The interaction of two splash pulses is depicted in Fig. 4. The apparent
splash centers are the point (p,z) = (0,0) and the ring (p,z) = (7.5.0) . The
linear nature of the problem is reflected in the simple superposition in the

overlap- region and the decoupled propagation of each splash pulse.



Several issues remain outstanding and are currently under
investigation. Foremost is the possible launchability of pulses derived from
the fundamental Gaussian pulses. The physical connection between resonating
structures and Gaussian beams (stationmary complex centre descriptions) leads
one to speculate that such puises may be associated with some special type of
resonator cavity. In addition to the indicated k-superposition/transform
pair, another class of solutions, those constructed by superposition of the
complex source location zg, may lead to other physically interesting pulses.
Finally, with (2) nonlinear wave equations reduce immediately to the

corresponding nonlinear Schrodinger equations. -For instance, the cubic wave

equation
[e-clol o
-alje|"0e=0 (18)
reduces to the cubic Schr;dinger equation

e e 2
4ika_F, = -2, F +a [F|°F . (19)

At least for one transverse dimension, (19) has known soliton solutions [7,
Sec.5.3]. Extensions of these solitons to ones associated with complex source
locations my yield other physically interesting wave equation solutions.

The author would like to thank Dr. James N. Brittingham for several
interesting discussions on his FWM results. This work was performed by the
Lawrence Livermore National Laboratory under the auspices of the

U.S. Department of Energy under contract W-7405-ENG-48.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure Captions

A time sequence of the fundamental solution (7)

for £ = kc/2n = 3.0 x 10° and z, = 1.0 demonstrates that it is a
modulated moving Gaussian pulse: (a) t = 0.0, (b) t = 4.0 x 10-10,
(c) t = 8.0 x 10710,

As k increases, the Gaussian pulse profile becomes more
concentrated along the z-axis than along the p-axis:

(a) f =3.0 x 107, (b) f = 3.0 x 109, (c) f = 3.0 x 101,

Time sequence of the splash pulse (17) with y = 1.0:
(a) t = 8.0 x 10711, (b) ¢t = 2.1 x 10710, (c) ¢ = 8.0 x 10710,

The interaction of two splash pulises (y = 1.0) confirms the
linearity of the problem. The splash centers are (p,z) = (0,0)

and (p,2z) = (7.5,0).
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fundamental gaussian pulse
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fundamental gaussian pulse
frequency = 8.000*10° 2z0= 1.000*10° time = 0.000
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pulse from an array of splash centers
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